Thanks! Is it missing CL_KERNEL_LOCAL_MEM_SIZE?

David

On Thu, Apr 22, 2010 at 6:13 PM, Andreas Klöckner <lists@informa.tiker.net> wrote:
On Donnerstag 22 April 2010, David Garcia wrote:
> The hardware-independent way to solve this is to
> call clGetKernelWorkGroupInfo() with an argument
> of CL_KERNEL_WORK_GROUP_SIZE to get the maximum number of work-items that
> you can enqueue at once.
>
> See also CL_KERNEL_LOCAL_MEM_SIZE to find out how much local memory will be
> available for that kernel.
>
> Andreas, I assume that this is also exposed through PyOpenCL somehow :)

http://documen.tician.de/pyopencl/reference.html#pyopencl.Kernel.get_work_group_info

Andreas

_______________________________________________
PyOpenCL mailing list
PyOpenCL@host304.hostmonster.com
http://host304.hostmonster.com/mailman/listinfo/pyopencl_tiker.net